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Direct Numerical 
Simulations of Turbulence

Data Generation and Statistical Analysis
Susan Kurien and Mark A. Taylor

In 1941, Andrei N. Kolmogorov predicted that, within all
highly turbulent flows, there is a universal energy-conserving
cascade whereby the energy of the large-scale eddies is trans-
ferred to finer and finer scales, down to the scales at which the
energy is finally dissipated to heat. It is difficult to measure
such a cascade directly, but related benchmark predictions for
the statistical behavior of turbulent flows can now be calculated
and examined using advanced simulation and flow visualization
tools. Los Alamos scientists have been able to simulate flows of
Reynolds numbers up to 105, the largest of which needed of the
order of terabytes of data storage and used the full power of 
the Advanced Simulation and Computing (ASC) Q machine 
for several weeks of computer time. Through clever analysis 
of single frames of the simulations, a great deal of information
can be extracted to show that the original constraints for the
Kolmogorov theory can be relaxed so that, in fact, his statistical
predictions hold locally in time. Furthermore, scientists are 
able to measure new statistical quantities that demonstrate the 
conditions under which departures from Kolmogorov theory
begin to occur. This type of statistical analysis of numerical
data is setting the agenda for future research.

Visualization of vorticity in a portion 
of a 2563 subdomain of the 20483 

turbulence simulation performed on 
the ASC Q machine at Los Alamos.

The ASC Q machine.

      



The problem of fluid turbulence
has benefited from concerted
efforts in theoretical, experi-

mental, and most recently, computa-
tional research. However, while
theoretical and experimental efforts
have cooperated for some time to
advance the field, computational sci-
ence is a relatively recent entry and
provides new data and problems that
have not been accessible by more
established techniques. For some prob-
lems, the entire turbulent flow field
can now be calculated to high preci-
sion with suitable numerical methods.
Flow visualization and extensive three-
dimensional (3-D) statistical analysis,
for example, are techniques that can be
used profitably. Computational capa-
bilities and expertise at Los Alamos
National Laboratory have resulted in
calculations that reveal new universal
properties of turbulence and new
directions in which to expand research
efforts, as we describe below.

Solving the Navier-Stokes equa-
tions, which provide the best-known
mathematical description of turbulent
flow, remains an immensely challeng-
ing problem. However, turbulence
research is driven by a practical need
for real-world engineering applications
and by the need to understand and pre-
dict the universal fundamental fea-
tures, if any, in all turbulent
phenomena. Therefore, approaches to
studying turbulence other than compu-
tational ones have evolved over sev-
eral decades and have produced a deep
understanding of the subject on a fun-
damental as well as a phenomenologi-
cal level. One such approach was
initiated in the late 19th century by
Osborne Reynolds, who proposed to
ignore the details of the turbulent flow
at each instant and, instead, to regard
the flow as a superposition of mean
and fluctuating parts. What naturally
followed this shift in approach was the
addition of statistics and probability
theory to the arsenal of tools used to
understand turbulence. The turbulence

field is considered to be a random field
in the probabilistic sense. The idea is
to study the statistical moments of tur-
bulent fields such as the multipoint
correlation functions of velocity, pres-
sure, and so on with the aim to recover
the full probability-distribution func-
tion of the field and its evolution given
a set of initial (boundary) conditions.
Alternatively, there are attempts to
obtain the probability distribution
functions first and derive from them
the statistics of the turbulent system. 
In a broad sense, deriving these func-
tions is the goal of statistical hydrody-
namics research (refer to the article 
“ Field Theory and Statistical
Hydrodynamics” on page 181 of this
volume). This article will examine
some of the questions that statistical
analysis of turbulence data can address
using several data sets generated by
solving the Navier-Stokes equations on
grids with different spatial resolutions.

Universal Properties 
of Turbulence

First, we briefly address the prob-
lem of universality of statistical prop-
erties. We would like to know
whether turbulence exists independ-
ently of the type of flow (water flow-
ing in a pipe or in a river, wind flow,
and others), the fluid that is flowing
(air or water), the boundary conditions
(smooth, rough, artificial, or periodic),
or the energy-input mechanisms (stir-
ring, shaking, or shearing). Is there a
regime of length scales that has quan-
tifiable properties common to all tur-
bulent flows? Two phenomenological
ideas have been useful in addressing
this question. The first was proposed
by Lewis F. Richardson in the late
19th century and is consistent with
our intuition from observing turbu-
lence—the energy input at large scales
is transferred into successively smaller
eddies of the turbulent flow in a so-
called cascade process. The notion of

an eddy in turbu-
lent

an “eddy” in turbulent flow is some-
what nebulous, but for current pur-
poses, it should be thought of as a
coherent turbulence structure with an
associated length scale, location, and
lifetime. The second idea is a
hypothesis advanced by Andrei N.
Kolmogorov (1941): For highly tur-
bulent flows in which the Richardson
cascade has created many genera-
tions of eddies, the turbulent length
scales of size r that are much smaller
than the typical large scale L of the
flow and much larger than the vis-
cous dissipative scale η must have
universal statistical properties.
Kolmogorov conjectured that, in this
regime of intermediate scales, the
dynamics is minimally affected by
forcing, boundaries, and large-scale
anisotropies, which are generally
flow-dependent, and unaffected by
the viscous dissipative effects that
occur at the very small scales. The
dynamics in this so-called inertial
range are dominated by the nonlinear
term of the Navier-Stokes equations,
and it seems reasonable that inertial-
range dynamics should display uni-
versal behavior statistically. In our
discussion of new statistical-analysis
and diagnostic techniques, we will be
concerned primarily with the statis-
tics of this universal inertial range of
scales in high-Reynolds-number tur-
bulence (see the article “ The
Turbulence Problem” on page 124
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for definitions of these terms).
The typical statistical scale-

dependent quantities investigated are
known as structure functions, one type
of which is

(1)

where uL(x) = u(x)⋅r̂ is the component
of the velocity along r (the subscript
L denotes longitudinal velocity) and
〈...〉 denotes ensemble and domain
averaging over all x. This structure
function is thus the nth-order moment
of the velocity difference across scales
of size r and is a measure, order by
order, of the statistical properties of
eddies of size r. Kolmogorov derived
a fundamental physical law for the
inertial range of scales r for high
Reynolds number, slowly decaying
(essentially steady-state) turbulence
under the assumption of isotropy and
homogeneity of the small scales:

(2)

where ε is the mean rate of energy
flux balancing the mean rate of energy
dissipation in statistically steady turbu-
lence in the limit of zero viscosity.
This so-called “four-fifths law”
(Kolmogorov 1941) is a statement of
energy conservation in the inertial
range; that is, the energy flux through
scales of size r1 equals the energy flux
through scales of size r2 if both r1 and
r2 are in the inertial range. The four-
fifths law is now used as a nominal
measure of the regime of inertial-range
scaling in experimental and numerical
data; that is, the range of scales over
which the four-fifths law is close to
being satisfied is taken to be the statis-
tically “universal” scaling regime.

Kolmogorov also assumed that the
cascade of energy occurs in a space-
filling, self-similar way. Formally,
there exists a unique scaling exponent
h such that

(3)

To be consistent with the four-
fifths law, the assumption of self-
similarity implies that h = 1/3 and
that, in general, if structure functions
of arbitrary order are to scale with r,
then

(4)

Most of the known empirical
departures from the Kolmogorov scal-
ing prediction can be traced to three
causes: The Reynolds number is not
large enough, the scaling is contami-
nated by the anisotropies inevitable in
most flows, and the self-similarity
assumption is not valid. The effects
relating to small Reynolds numbers
are something we have to live with, in
a sense, because of the limitations of
technology and computational power,
but cumulative data analysis of exper-
iments and simulations performed
over several decades strongly suggest
that the scaling exponents do not dif-
fer much for a Taylor microscale
Reynolds number1 Rλ ranging from
approximately 100 to approximately
10,000. 

It therefore seems that, at a mini-
mum, we observe a convergence of
the exponents over a wide range of
high Reynolds numbers. The assump-
tion of statistical isotropy, that is,
invariance under arbitrary rigid rota-
tions, is key to the scaling-law predic-
tions, but isotropy is a rather strong
restriction to make when most turbu-

lent flows are apparently highly
anisotropic. There are two ways to
remove the inevitable effects of
anisotropy in order to test the funda-
mental assumption of self-similarity.
The first is to measure flows with
extremely high Reynolds numbers,
such as wind flow over the ground,
that yield wide separation of scales
and resort to the Kolmogorov assump-
tion that, for sufficiently small scales,
the statistics will be locally isotropic.
The second is to explicitly extract the
isotropic component of the statistics,
for example, by systematically averag-
ing out the anisotropic contributions,
as we discuss in detail below.
Recently, the effect of anisotropy on
scaling exponents has been studied
extensively, and there are now ways to
quantify anisotropic effects (Kurien
and Sreenivasan 2001), as well as to
extract purely isotropic contributions
(Taylor et al. 2003), which might then
be more sensibly compared with theo-
retical predictions. We will discuss a
new method to implement the latter
procedure that has proved to be very
useful in analyzing arbitrarily
anisotropic flows. The final known
reason for departure from the
Kolmogorov scaling prediction is that
the turbulent cascade is not self-simi-
lar. That is, instead of each generation
of eddies being produced in a space-
filling, self-similar way, the cascade
proceeds in an intermittent manner, in
which some parts of the flow at a
given instant are extremely active
while others are relatively quiescent.
This is the now well-known intermit-
tency feature of turbulence, and it
results in what is known as “anom-
alous” scaling—that is, there is no
unique scaling exponent h from 
which all scaling exponents can be
simply derived.

In the remainder of this article, we
describe our studies of the universal
statistical features of turbulence using
quantities such as the structure func-
tions measured from simulations
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1The Taylor microscale Reynolds number is
Rλ = u′λ/ν, where u′ is the velocity fluctua-
tion and ν is the viscosity. Initially, G. I.
Taylor thought that the scale λ—the radius
of curvature at the origin of the autocorrela-
tion of the fluctuating velocity—was the
viscous dissipation scale of turbulence. In
fact, its magnitude is intermediate between
the large scale L and the true (Kolmogorov)
dissipation scale η. Rλ is often used instead
of the large-scale Reynolds number, Re, to
characterize flows that have widely varying
large-scale properties and, hence, widely
varying Reynolds numbers but whose small-
scale fluctuations might be comparable. At
high Reynolds numbers, Rλ ∝ Re1/2.

                                                                                 



(resolved down to the dissipation
scale) of the fundamental equations of
motion, the Navier-Stokes equations.
First, we discuss the simulations
themselves and then demonstrate the
use of diagnostics to extract statisti-
cally isotropic features of the flow.
Our results suggest a refinement of
the Kolmogorov picture of isotropic
turbulence.

Direct Numerical Simulations

Direct numerical simulation (DNS)
refers to solving the Navier-Stokes
equations numerically by resolving all
scales down to the scale of viscous
dissipation. DNS represents a brute-
force approach to modeling turbu-
lence: No modeling is required
beyond the Navier-Stokes equations,
simple well-understood numerical
methods are used, but massive com-
puting resources are needed. When
carefully produced, DNS data is an
excellent substitute for exact, analytic
solutions of the Navier-Stokes equa-
tions. The only drawback is that to
obtain solutions for moderately high
Reynolds numbers requires weeks of
computing time on today’s largest
supercomputers. To achieve the
Reynolds numbers of a typical atmos-
pheric boundary layer flow, Rλ
= 10,000, will require a 108-fold
increase in computing power over
today’s largest computers. Fortunately,
large-scale features such as the mean
flow and other statistical properties of
turbulence depend only weakly on the
Reynolds number. Thus, DNS of
flows with more moderate Reynolds
numbers has been valuable for study-
ing many aspects of turbulence,
including universal statistical features.
For additional information, see, for
example, the review by Moin and
Mahesh (1998).

To obtain as high a Reynolds num-
ber as possible, DNS calculations are
usually performed on the simplest

flows: the incompressible Navier-
Stokes equations, without multiple
materials or other physics that must
be modeled. The calculations are fur-
ther limited to simple domains and
equally spaced grids, which allow for
very efficient numerical algorithms.
The highest possible Reynolds num-
bers can be achieved for the classic
problem of homogeneous turbulence
in a square box with periodic bound-
ary conditions, the problem we have
focused on.

For fully resolved calculations,
spectral methods are preferred for
their high accuracy. Although high-
order finite-difference codes can yield
similar accuracy, spectral methods
still have an advantage because they
permit fast, direct solution of
Poisson’s equation. Solving Poisson’s
equation is required to determine the
pressure gradient that appears in the
Navier-Stokes equations. Spectral
methods became practical for compu-
tational fluid dynamics after the
development of the spectral-transform
method (Eliasen et al. 1970, Orszag
1970). Additional issues important for
the Navier-Stokes equations, such as
time-stepping schemes and control of
aliasing errors, were effectively
treated in Rogallo (1981). The meth-
ods used today are quite similar to
those used in that work.

The spectral part of a DNS code
refers to the method used for the spa-
tial discretization of the equations. In
particular, to compute a spatial deriva-
tive of a term in the equations, one
first expands that term in a truncated
Fourier expansion using the fast
Fourier transform (FFT) and then
computes the derivatives exactly from
the Fourier expansion. After the equa-
tions are discretized in space, we are
left with a system of ordinary differ-
ential equations, which are integrated
in time with a third- or fourth-order
Runge-Kutta or similar scheme. This
procedure has one complication aris-
ing from the nonlinear advection term.

The nonlinearity can transfer energy
into frequencies higher than can be
resolved by the numerical grid. The
energy in these unresolved frequen-
cies will then artificially contaminate
the energy and phases of the resolved
frequencies in a procedure known as
aliasing. This aliasing error is typi-
cally controlled by properly designed
spectral filters.

The computational expense of
DNS comes from the strict restrictions
on the grid spacing, ∆x, and the time
step, ∆t, that are required to fully
resolve all scales in the Navier-Stokes
equations. If one is primarily inter-
ested in the statistical properties of the
inertial range, it is sufficient to run the
numerical simulation with ∆x ≤ 3η,
where η is the Kolmogorov length
scale.2

Since η ∼ Re–3/4 (or η ∼ Rλ
–3/2),

this grid-spacing restriction also deter-
mines the highest-Reynolds-number
flow that can be accurately computed
for a given ∆x. The restrictions on ∆t
can be estimated from the considera-
tion of physical time scales in the
problem, but in practice, a more
restrictive constraint comes from the
CFL (Courant-Friedrichs-Levy) condi-
tion, which shows that, for the time-
stepping schemes used, the time step
must be kept proportional to the grid
spacing. Combined, these considera-
tions show that the computational cost
of DNS is proportional to Rλ

6 (Pope
2000).

In DNS calculations, it is important
to ensure that the energy dissipation is
due entirely to the viscous terms in
the Navier-Stokes equations, rather
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2 The Kolmogorov length scale η depends
only on the rate of energy flux ε and the
(chosen) fluid viscosity ν. In the forced
simulations, η is determined entirely by
the forcing (rate of input of energy),
which balances the flux rate in the statisti-
cal steady state and the chosen viscosity
coefficient. In the decaying simulation, η
is fully determined at initial time by the
initial condition but thereafter evolves
with the dynamics, thus resulting in
increasing resolution as the flow decays.

                                               



than to the numerical method used.
Often, numerical methods are
designed to introduce various types of
artificial dissipation, which can have
beneficial properties but are not
appropriate for DNS. For the spectral
method outlined here, we estimate the
numerical viscosity by computing the
kinetic energy E at every time step
and comparing the numerical evolu-
tion of E,

where E = 0.5 〈u⋅u〉, with the evolu-
tion given by the Navier-Stokes equa-
tions. In the unforced case, the latter
term is

where u is the flow field. In our
largest simulation, the two quantities
agree to more than four digits, demon-
strating that over 99.99 percent of the
dissipation is due to the Navier-Stokes
viscosity.

Finally, if DNS in a periodic box
is used to study universal features of
turbulence, the largest scales are
strongly influenced by the square
computational domain. For example,
consider a field with all its energy in
spherical wave numbers of at most
2. There are only a handful of such
Fourier modes, and they are strongly
aligned with the coordinate direc-
tions of the box. Any such field
could not be isotropic. Many of the
directional moments of the field
would greatly differ between coordi-
nate and noncoordinate directions.
There are several ways to avoid this
effect in order to obtain more
isotropic simulations. The most
direct method is to simply keep
energy out of the large scales. This
is the approach usually taken with
decaying turbulence simulations. For
forced simulations, it is possible to
achieve flows with much higher
Reynolds numbers by injecting

energy into only the low wave num-
bers, but to obtain isotropic solutions
requires careful attention. One
approach is to use stochastic forcing
designed so that the flow will be
isotropic for a long enough time
average, even though the field at any
given time will have large
anisotropies at the large scales. This
approach introduces a lot of fluctua-
tions in the solutions, so long time
averages must be taken to obtain
converged statistics. The most effi-
cient approach is to use smooth,
deterministic low-wave-number forc-
ing. Converged statistics can then be
obtained with shorter time averages,
but some anisotropy will persist
throughout the flow. For many quan-
tities of interest, however, this
anisotropy can be removed with the
angle-averaging techniques
described below.

In our work, we have examined
DNS simulations for decaying turbu-
lence, stochastically forced turbu-
lence, and deterministically forced
turbulence (refer to Table I). For the
decaying turbulence simulations, a
properly chosen initial condition is
allowed to decay through the effects
of viscosity. For the forced prob-
lems, the simulations are run until
the forcing and dissipation reach sta-
tistical equilibrium, and then they
are run for several additional eddy

turnover times to collect data from
the equilibrium regime.

The decaying problem has the
advantage that more realistic flows
can be simulated, and it is possible, in
principle, to compare the simulation
results with those from experiments,
such as those carried out at the
recently upgraded Corrsin Wind
Tunnel (Kang et al. 2003). But the
decaying problem has the drawback
that the results strongly depend on the
initial condition, and one is faced with
the challenge of generating a realistic
turbulence state to use for the initial
condition. To address this problem, in
data set 5, we have followed the pro-
cedure described by Kang et al.
(2003). We generate an initial flow
field with random, uncorrelated
phases but a prescribed energy spec-
trum. The flow is then run for a short
time, until the phases become corre-
lated enough to give a reasonable
mean-derivative skewness. The
energy spectrum is then reinitialized
back to the original spectrum while
retaining the correlated phases. Our
low-wave-number forcing schemes
are described in detail in Taylor et al.
(2003). The deterministic forcing is
based on the work by Sullivan et al.
(1994), Sreenivasan et al. (1996), and
Overholt and Pope (1998). Data sets 1
and 4 were obtained with this forcing.
Data set 3 was obtained with a similar
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scheme, but modified to inject helicity
into the flow. The stochastic forcing
used for data set 2 was based on the
forcing given in Gotoh et al. (2002).
We used both types of forcing to
demonstrate the equivalence of the
results when angle averaging is
applied to the data.

Parallel Computing Issues

DNS calculations at resolutions of
up to 5123 can now be obtained on
moderately large clusters. But the
larger DNS calculations currently
require Advanced Simulation and
Computing (ASC)-class supercomput-
ers. Our largest simulation, with a res-
olution of 20483, requires a 256-fold
increase in computing power over that
required for a resolution of 5123. With
8 billion grid points, our 20483 simu-
lation is one of the largest ever com-
pleted. It required several weeks using
2048 processors of ASC-Q and was
made as part of the Laboratory’s
Science Runs to showcase ASC-Q’s
performance.

To implement FFT-based DNS
codes on distributed memory parallel
computers, the community relies
almost exclusively on the data-trans-
pose method. Each processor must
perform thousands of FFTs per time
step, but the data required for those
FFTs will be distributed among many
other processors. It is quite difficult
to write an efficient, distributed-data
FFT, and thus the data-transpose
method continuously adjusts the dis-
tribution of data among the proces-
sors so that each processor can use a
conventional serial FFT. The name
“transpose” comes from the fact that
if the data distribution is represented
on a 3-D mesh of processors, the
operations required by the data-trans-
pose algorithm look like matrix
transposes. For a resolution of 20483,
over a terabyte of data must be
moved through the network for each

time step, and thus the method relies
on a tightly coupled parallel com-
puter with very high bandwidth. On
ASC-Q, for problems of size N3, we
obtain excellent scaling for up to N/2
processors. Using N processors still
represents a significant speedup, but
the scalability starts to decrease, so
there is little benefit to using more
than N processors.

Another important problem con-
cerns data input/output (I/O). For a
resolution of 20483, each flow snap-
shot (which can also be used as a
restart file) is 192 gigabytes. Serial
I/O (having a single processor collect
the data from all other processors and
write it into a single file) can obtain
data rates only in the tens of
megabytes per second and thus
requires hours to write a single snap-
shot or read in a snapshot when
restarting. To avoid this unacceptable
bottleneck, we utilized the Unified
Data Model (UDM) I/O library of the
High-Performance Computing
Environment Group at Los Alamos.
UDM, in conjunction with ASC-Q’s
parallel-file system, allows all
processors to participate in the I/O
for a single file. With UDM, we were
able to obtain data-transfer rates of
over 500 megabytes per second,
which means snapshots can be writ-
ten or read in under 7 minutes.

The Angle-Averaging
Technique

In general, the two-point structure
function S(r) defined in Equation (1)
is a function of the vector r, that is, a
function of the size of the separation
scale r = |r|, as well as of the orienta-
tion of r. The Kolmogorov 1941 the-
ory, however, assumes that, for
sufficiently small scales, the flow
depends only on the magnitude of r
and is independent of the orientation
of r. Most reasonably controlled flow
experiments (for example, those

occurring in wind tunnels or pipes),
as well as uncontrolled experiments
(for example, those involving meas-
urements of velocity in the atmos-
pheric boundary layer), inevitably
have some degree of anisotropy
either from boundary configurations
or from forcing mechanisms.
Therefore, reasonable comparisons
with theoretical predictions require
understanding the degree of contami-
nation caused by arbitrary anisotropy
as well as formulating methods to
eliminate these effects from the data.
From experiments at very high
Reynolds numbers (Taylor Reynolds
number of ~10,000 or higher), in
which there is wide separation
between the large scales and the dis-
sipative scales, we know that, for
two-point statistics of the structure
functions given in Equation (1), the
contamination due to anisotropy
decays rapidly with scale size and
that local isotropy is recovered in the
leading order. In numerical simula-
tions, the Reynolds numbers, as well
as the range of scales computed, are
much smaller, and anisotropic effects
typically do not have enough range
of scales to decay sufficiently. As a
result, they have a significant contri-
bution in the inertial range. However,
the availability of the full spatial and
temporal information of the flow
field offers other unique possibilities
for investigating purely isotropic
effects. One general procedure
recently developed at Los Alamos is
the angle averaging of the structure
functions, which averages out the
anisotropic contributions of an arbi-
trary (anisotropic) flow.

The primary motivation for our
angle-averaging procedure is the
recent derivation of a new version of
the Kolmogorov four-fifths law
(Duchon and Robert 2000, Eyink
2003). In this version, the four-fifths
law states that for any domain B of
size R in the limit that the viscosity
ν → 0 (infinite or sufficiently high
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Reynolds number), for scales of size
r << R, and at any instant in time,

(5)

where εB is the energy dissipation rate
averaged over B. That is, the four-
fifths law holds locally, instanta-
neously, and without any assumption
of homogeneity or isotropy. The inte-
gration over the solid angle Ω, indi-
cates averaging over all possible
orientations of r for a given |r|, which
projects out the isotropic part of the
correlation. The statement of energy
conservation in the inertial range is
now quite different—there is an under-
lying isotropic component common to
all flows that formally obeys the same
law that Kolmogorov derived using
more restrictive assumptions.

To test this prediction with numeri-
cal simulations, we devised a way to
take the solid-angle average of the
data computed on a grid. The obvious,
but computationally expensive and
error-prone solution, would be to
interpolate the velocity vector field
over a sphere of desired radius r and
integrate. Instead, we chose to first
use the separation vectors allowed by
the grid to compute structure func-
tions for a fixed (θ,ϕ) as a function of
r, as follows:

Then, we computed a set of these
structure functions for various (θ,ϕ)
allowed by our grid so that we have a
set of functions S(r,θ1,ϕ1),
S(r,θ2,ϕ2),… S(r,θn,ϕn) for pairs of
angles (θi,ϕi) that span the full spheri-
cal solid angle rather uniformly. Each
S is now a smooth function of r in a
particular direction and can be inter-

polated to obtain S(r) for any r. Then,
to yield the angle-averaged value for a
particular r, we compute

(6)

where the weight wi is the solid angle
subtended by the Voronoi cell contain-
ing the point r̂.

As n → ∞, the average becomes
arbitrarily close to the true spherical
integral of Equation (5), and so the
isotropic component of the statistics is
recovered. The method is not specific
to the four-fifths law and can in prin-
ciple be used to examine the underly-
ing isotropic component of any
two-point correlation function, as we
demonstrate below.

The Four-Fifths Law

Figure 1 shows such a calculation
performed on a single frame of an
anisotropically forced flow at a reso-
lution of 1024 grid points to a side
with periodic boundary conditions

(data set 4), which was run long
enough to achieve a statistically
steady state. Each colored line is the
compensated, domain-averaged, lon-
gitudinal third-order structure func-
tion, S3(r)/εr, computed in a
particular direction in the periodic
box for the increments r allowed by
the grid in that direction. The length
scale r has been nondimensionalized
by the dissipation length scale η. The
compensated statistics were com-
puted in 73 different directions that
were fairly evenly distributed over
the sphere. As is clearly seen, the
calculation in a given direction yields
a smooth curve, which we interpo-
lated using a cubic spline fit to
obtain S3(r)/εr for arbitrary length r
in a given direction. The different
directions also clearly display a large
degree of variability with respect to
each other, which appears to dimin-
ish as the scales get very small but is
significant in a midrange of scales
wherein the inertial range might be
expected to lie. The thick black line
is the average over all 73 directions
of S3(r)/εr as a function of r calcu-
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Figure 1. The Four-Fifths Law for a Single Frame of Forced Flow
The four-fifths law was computed for a single frame of data set 4 for deterministic
forced flow, whose resolution is 10243. Each colored line is the compensated third-
order structure function computed in one of 73 different directions of the flow. The
black line is the angle-averaged function, which displays a range of scales between
30 and 200 that fall within 5% of the theoretical value of 0.8.

                                                                                                                    



lated according to Equation (6).
Remarkably, this angle-averaged

function displays a reasonable range
over which the curve is rather flat
(indicating linear scaling in r) and is
within 5 percent of 0.8, which is the
theoretical predicted value. This
result says that, at every instant in an
anisotropic flow, there is an underly-
ing isotropic component that can be
projected out when an approximated
spherical average is used and that,
furthermore, obeys to a very good
degree the fundamental universal
four-fifths law for isotropic flow.

In Figure 2, we show the same cal-
culation for data sets 1 and 2, which
were calculated at lower Reynolds
numbers but are forced in the low
wave numbers as described above.
The solid (black) and dotted (red)
lines are the angle-averaged and then
time-averaged compensated third-
order structure functions for data sets
1 and 2, respectively. While the scal-
ing range for this resolution is less

than that in Figure 1, the noteworthy
feature is that the curves are indistin-
guishable, which is a strong indication
of universality because the underlying
isotropic contributions of these two
very different anisotropic flows are
identical (Taylor et al. 2003).

The Two-Fifteenths Law

To demonstrate the distinction
between the Kolmogorov local
isotropy assumption and what we see
in Figure 1, we discuss the measure-
ment, using the same angle-averaging
technique, of a very different statisti-
cal quantity that obeys the so-called
two-fifteenths law: 

where h is the mean helicity dissipa-
tion rate and uT denotes the compo-

nent of u(r) transverse to r. The quan-
tity on the left side of this equation is
a third-order statistic, as is S3(r) for
the four-fifths law, but this new quan-
tity probes the presence of a constant
total helicity flux h in the inertial
range (Kurien 2003). Like energy,
helicity (u ⋅ ∇ × u) is conserved in
turbulence, and our analysis has
revealed that in the inertial range,
helicity has other conserved properties
in common with those of energy, such
as constant flux. 

Figure 3 shows this parity-breaking
third-order statistic normalized by hr2

in a forced flow in a periodic box of
512 grid points to a side with fixed
sign of helicity input into the two
lowest modes at each time step (data
set 3). The picture in Figure 3 indi-
cates that helicity flux (that is, the
appropriate third-order correlation
function) is highly anisotropic all the
way into the small scales, as shown by
the vast spread among the different
directions. Nevertheless, there is still
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Figure 2. Angle- and Time-Averaged Compensated
Third-Order Structure Function for Two Different
Forced Flows
The angle- and time-averaged compensated third-order
structure function was computed for data sets 1 (solid line)
and 2 (dotted line), each of which has a resolution of 5123.
These two differently forced flows essentially coincide with
each other in this statistical measure, thus supporting the
notion of underlying universality of turbulent flows.

Figure 3. The Two-Fifteenths Law from a Single Frame
of Data Set 3
The two-fifteenths law was computed for a single frame of data
set 3, whose resolution is 5123. Each colored line is the com-
pensated third-order statistic in one of 73 different directions in
the flow. The black curve is the angle-averaged function, which
shows a range between 30 and 200 wherein its value is within
4% of the theoretically predicted value of 2/15.

                              



an underlying isotropic component
(thick black line) that emerges from
the angle-averaging procedure and
seems to agree with the universally
predicted two-fifteenths law to
within 5 percent over a reasonable
range of scales. This analysis
(Kurien et al. 2004) reveals that the
flux of helicity is more anisotropic
and intermittent (in the sense of
large departures from the mean) than
the energy flux measured analo-
gously by the four-fifths law
(Figures 1 and 2).

In summary, angle averaging and
statistical analysis have revealed that
the isotropic component in turbulent
flows is universal, agrees rather well
with the Kolmogorov theory, and
moreover, is consistent with the

local version of Duchon and Robert
(2000) and Eyink (2003). The proce-
dure allows us to separate the con-
tamination due to anisotropy from
other effects, such as small Reynolds
number and intermittency, that can
muddy the measurement of clean
scaling laws. The angle-averaging
method also gives us a way to more
efficiently use data and gain statisti-
cally significant results from single
snapshots of the flow, whereas in the
past, long time averages were taken,
which led to data size and storage
issues. Especially when we begin to
start looking at the storage and
analysis of data set 5, which needs
of the order of 250 gigabytes of disk
space, a scheme such as the angle-
averaging procedure, which

increases the amount of information
we can glean from a single frame of
turbulence data, is a definite asset.

Utility of Large-Scale
Simulations

Our largest simulation (data set 5) is
for a very highly resolved (20483),
decaying flow at a moderate Reynolds
number (270). The simulation’s initial
condition was taken from the centerline
data gathered from a wind tunnel exper-
iment performed at Johns Hopkins
University (Tao et al. 2000). The simu-
lation, performed on 2048 processors of
ASC-Q, did not achieve the Rλ ∼ 700 of
the experiment. Therefore, direct com-
parison with the experimental results
cannot be made until we can compute
decaying flow at a higher Reynolds
number or the experimental facility can
rerun the experiment at a Reynolds
number matching that of the existing
simulation. However, a full numerical
simulation provides access to the full
spatial and temporal velocity field,
while the experiments normally meas-
ure a sparse subset of the flow field.

Figure 4 shows the surfaces of con-
stant vorticity magnitude for a 2563

subdomain of the 20483 simulation.
Vorticity visualizations are typically
used to show the locations of the flow
structures. In this case, the vorticity
visualization shows that the generation
of successively smaller energetic struc-
tures occurs by the stretching of regions
of vorticity by the nonlinearity. The
small structures in Figure 4 persist
down to the grid size of the simulation.

Data sets 1 and 2 had Reynolds
numbers similar to the number for data
set 5 but only a quarter of the number
of grid points to a side. That is, the lin-
ear size of the smallest scales resolved
in the 5123 simulations of data sets 1
and 2 was 64 times larger than the
smallest scales in the 20483 simulation
of data set 5. Because the 5123 simula-
tions cannot resolve almost two orders
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Figure 4. Surfaces of Constant Vorticity for Decaying Turbulence
This visualization is of the surfaces of constant vorticity magnitude in one of the
2563 subdomains of the entire 20483 simulation (data set 5). There are 512 such sub-
domains in this simulation.

         



of magnitude in scale that are accessible
to the 20483 simulation, the coarser
simulations obscure the turbulent fine
structure seen at higher resolutions.
Although they are quite suitable for
observing the many inertial-range fea-
tures described above, the coarser com-
putations obscure the significant
energetic events that occur at higher
resolution. Clearly if we are to gain a
deeper understanding of the spatial and
temporal universal properties of turbu-
lence through such numerical calcula-
tions, we must continue to pursue ways
to compute larger resolved Navier-
Stokes simulations and to develop effi-
cient methods for analyzing the
enormous quantities of data involved. n

  

Further Reading

Duchon, J., and R. Robert. 2000. Inertial
Energy Dissipation for Weak Solutions of
Incompressible Euler and Navier-Stokes
Equations. Nonlinearity 13: 249.

Eliasen, E., B. Machenhauer, and E.
Rasmussen. 1970. On a Numerical Method
for Integration of the Hydrodynamical
Equations with a Spectral Representation of
the Horizontal Fields. In Report No. 2.
Institute for Theoretical Meteorology,
University of Copenhagen 

Eyink, G. L. 2003. Local 4/5-Law and Energy
Dissipation Anomaly in Turbulence.
Nonlinearity 16: 137.

Gotoh, T., D. Fukayama, and T. Nakano. 2002.
Velocity Field Statistics in Homogenous
Steady Turbulence Obtained Using a High-
Resolution Direct Numerical Simulation.
Phys. Fluids 14 (3): 1065.

Kang, H. S., S. Chester, and C. Meneveau.
2003. Decaying Turbulence in an Active-
Grid-Generated Flow and Comparisons with
Large-Eddy Simulation. J. Fluid Mech. 480:
129.

Kolmogorov, A. N. 1941. The Local Structure
of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds Numbers.
Dok. Akad. Nauk. SSSR 30: 301.

Kurien, S. 2003. The Reflection-Antisymmetric
Counterpart of the Kármán-Howarth
Dynamical Equation. Physica D 175 (3–4):
167.

Kurien, S., and K. R. Sreenivasan. 2001.
Measures of Anisotropy and the Universal
Properties of Turbulence. In New Trends in
Turbulence: Turbulence Nouveaux Aspects:
École de Physique DES Houches—Ujf and
Inpg—Grenoble, a NATO Advanced Study
Institute, Les Houches, Session LXXIV, 31
July–September 1, 2000. p. 53. Edited by
M. Lesieur, and F. David. New York:
Springer-Verlag.

Kurien, S., M. A. Taylor, and T. Matsumoto.
2004. Isotropic Third-Order Statistics in
Turbulence with Helicity: the 2/15-Law. 
J. Fluid Mech. 515: 87.

Moin, P., and K. Mahesh. 1998. Direct
Numerical Simulation: A Tool for
Turbulence Research. 1998. Annu. Rev.
Fluid Mech. 30: 539.

Orszag, S. A. 1970. Transform Method for the
Calculation of Vector-Coupled Sums:
Application to the Spectral Form of the
Vorticity Equation. J. Atmos. Sci. 27 (6):
890.

Overholt, M. R., and S. B. Pope. 1998. A
Deterministic Forcing Scheme for Direct
Numerical Simulations of Turbulence.
Comp. Fluids 27 (1): 11.

Pope, S. B. 2000. Turbulent Flows. Cambridge,
United Kingdom: Cambridge University
Press.

Rogallo, R. S. 1981. Numerical Experiments in
Homogeneous Turbulence. NASA Technical
Report TM81315.

Sreenivasan, K. R., S. I. Vainshtein, R.
Bhiladvala, I. San Gil, S. Chen, and N. Cao.
1996. Asymmetry of Velocity Increments in
Fully Developed Turbulence and the
Scaling of Low-Order Moments. Phys. Rev.
Lett. 77 (8): 1488.

Sullivan, N. P., S. Mahalingam, and R. M. Kerr.
1994. Deterministic Forcing of
Homogeneous, Isotropic Turbulence. Phys.
Fluids 6 (4): 1612.

Tao, B., J. Katz, and C. Meneveau. 2000.
Geometry and Scale Relationships in High 
Reynolds Number Turbulence Determined
from Three-Dimensional Holographic
Velocimetry. Phys. Fluids 12 (5): 941.

Taylor, M. A., S. Kurien, and G. L. Eyink.
2003. Recovering Isotropic Statistics in
Turbulence Simulations: The Kolmogorov
4/5th Law. Phys. Rev. E 68 (2): 26310.

Number 29  2005  Los Alamos Science  151

Direct Numerical Simulations of Turbulence

For further information, contact 
Susan Kurien (505) 665-0148
(skurien@lanl.gov) or Mark Taylor (505)
284-1874 (mataylo@sandia.gov).

                                                            


